

VIRTUAL SCREENING OF NATURAL PRODUCTS AS POTENTIAL INHIBITORS OF AMYLOID-BETA OLIGOMER-INDUCED NEUROTOXICITY

Mayara Carla dos Santos^{1,4*}, Priscila Baltazar Gonçalves², Yraima Lopes Cordeiro², Ana Carolina R. Sodero³, Julia Helena Rosauro Clarke⁴, Ivana Correa Ramos Leal^{1*}

mayaracarla.farm@gmail.com

¹*Laboratório de Produtos Naturais e Ensaios Biológicos, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.*

²*Laboratório de Biologia Molecular e Estrutural, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.* ³*Laboratório de Modelagem Molecular e QSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.* ⁴*Laboratório de Investigação em Neuroprogramação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.*

Alzheimer's disease (AD) is the leading cause of dementia worldwide, pathologically characterized by the aggregation of the amyloid-beta (A β) peptide. During the A β aggregation pathway, various aggregate species are formed, including oligomers, protofibrils, and fibrils. Among these, soluble A β oligomers (A β Os) are considered the most neurotoxic species. Natural products (NPs) are recognized as a promising source of anti-amyloid compounds, including inhibitors of A β O-induced neurotoxicity¹. Brazilian biodiversity offers a rich source of structurally diverse natural compounds with significant potential for new drug discovery. In this study, we investigated the NuBBE database (NuBBEDB)² using a virtual screening approach, combining molecular docking and ADMET profile prediction to identify potential inhibitors of A β oligomer-induced toxicity. A total of 2,363 compounds were docked into the A β O structure (PDB ID: 6RHY) using AutoDock Vina³. The top 50 hits with the highest binding affinities were selected for each binding site: the hydrophilic edge pocket (P0 e P1) and the hydrophobic core pocket (P2). To predict their ADMET profiles, these compounds were analyzed using the Admet_Risk module in ADMET Predictor® 13. A risk score cutoff of Admet_Risk \leq 6.5 was applied to prioritize the safest and most promising candidates for experimental validation and BBB_Filter. High-risk candidates were excluded, and the remaining hits were ranked based on lower ADMET risk scores and high BBB penetration probability. As a result, 14 compounds simultaneously met the Admet_Risk \leq 6.5 criterion and were approved by the BBB_Filter. These compounds belong to the chemical classes of 12 tri- and di-type polycycle terpenoids and two indolic alkaloids. These results highlight promising candidates for further experimental validation. Their final binding affinities ranged from -9.407 to -7.293 kcal/mol at the hydrophilic edge binding pockets (P1 e P0) and from -7.747 to -5.504 kcal/mol at the hydrophobic core binding pocket (P2), highlighting their potential as candidates for inhibitors of A β O-induced toxicity. Herein, our goal is to identify the most promising candidates for further investigation through biophysical assays and imaging techniques.

Keywords: Alzheimer's Disease, Anti-amyloids, Amyloid-beta, Oligomers, Virtual Screening, Molecular Docking.

References:

1. GONÇALVES, P. B.; SODERO, A. C. R.; CORDEIRO, Y. Natural products targeting amyloid- β oligomer neurotoxicity in Alzheimer's disease. *European Journal of Medicinal Chemistry*, v. 276, p. 116684, 2024.
2. VALLI, M. et al. NuBBE database (NuBBEDB): an updated database to uncover chemical and biological information from Brazilian biodiversity. *Journal of Natural Products*, v. 76, n. 3, p. 439-444, 2013.
3. GONÇALVES, P. B.; CORDEIRO, Y.; SODERO, A. C. R. Understanding the mechanisms of green tea EGCG against amyloid β oligomer neurotoxicity through computational studies. *RSC Advances*, v. 14, p. 22525-22539, 2024.

